Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling of the transient interstitial diffusion of implanted atoms during low-temperature annealing of silicon substrates

Identifieur interne : 001845 ( Main/Repository ); précédent : 001844; suivant : 001846

Modeling of the transient interstitial diffusion of implanted atoms during low-temperature annealing of silicon substrates

Auteurs : RBID : Pascal:12-0203922

Descripteurs français

English descriptors

Abstract

It has been shown that many of the phenomena related to the formation of "tails" in the low-concentration region of ion-implanted impurity distribution are due to the anomalous diffusion of nonequilibrium impurity interstitials. These phenomena include boron implantation in preamorphized silicon, a "hot" implantation of indium ions, annealing of ion-implanted layers et cetera. In particular, to verify this microscopic mechanism, a simulation of boron redistribution during low-temperature annealing of ion-implanted layers has been carried out under different conditions of transient enhanced diffusion suppression. Due to the good agreement with the experimental data, the values of the average migration length of nonequilibrium impurity interstitials have been obtained. It has been shown that for boron implanted into a silicon layer preamorphized by germanium ions the average migration length of impurity interstitials at the annealing temperature of 800 C can be reduced from 11 nm to approximately 6 nm due to additional implantation of nitrogen. The further shortening of the average migration length is observed if the processing temperature is reduced to 750 °C It is also found that for implantation of BF2 ions into silicon crystal, the value of the average migration length of boron interstitials is equal to 7.2 nm for thermal treatment at a temperature of 800 °C.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0203922

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Modeling of the transient interstitial diffusion of implanted atoms during low-temperature annealing of silicon substrates</title>
<author>
<name sortKey="Velichko, O I" uniqKey="Velichko O">O. I. Velichko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Belarusian State University of Informatics and Radioelectronics, 6, P. Brovki Str.</s1>
<s2>Minsk 220013</s2>
<s3>BLR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Biélorussie</country>
<wicri:noRegion>Minsk 220013</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kavaliova, A P" uniqKey="Kavaliova A">A. P. Kavaliova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Belarusian State University of Informatics and Radioelectronics, 6, P. Brovki Str.</s1>
<s2>Minsk 220013</s2>
<s3>BLR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Biélorussie</country>
<wicri:noRegion>Minsk 220013</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0203922</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0203922 INIST</idno>
<idno type="RBID">Pascal:12-0203922</idno>
<idno type="wicri:Area/Main/Corpus">001E22</idno>
<idno type="wicri:Area/Main/Repository">001845</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-4526</idno>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<title level="j" type="main">Physica. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Anomalous diffusion</term>
<term>Boron additions</term>
<term>Diffusion length</term>
<term>Germanium additions</term>
<term>Impurity diffusion</term>
<term>Impurity distribution</term>
<term>Interstitial impurities</term>
<term>Ion implantation</term>
<term>Microscopic model</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition bore</term>
<term>Addition germanium</term>
<term>Longueur diffusion(transport)</term>
<term>Impureté interstitielle</term>
<term>Recuit</term>
<term>Implantation ion</term>
<term>Distribution impureté</term>
<term>Diffusion anormale</term>
<term>Hétérodiffusion</term>
<term>Modèle microscopique</term>
<term>Silicium</term>
<term>Semiconducteur</term>
<term>Si</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It has been shown that many of the phenomena related to the formation of "tails" in the low-concentration region of ion-implanted impurity distribution are due to the anomalous diffusion of nonequilibrium impurity interstitials. These phenomena include boron implantation in preamorphized silicon, a "hot" implantation of indium ions, annealing of ion-implanted layers et cetera. In particular, to verify this microscopic mechanism, a simulation of boron redistribution during low-temperature annealing of ion-implanted layers has been carried out under different conditions of transient enhanced diffusion suppression. Due to the good agreement with the experimental data, the values of the average migration length of nonequilibrium impurity interstitials have been obtained. It has been shown that for boron implanted into a silicon layer preamorphized by germanium ions the average migration length of impurity interstitials at the annealing temperature of 800 C can be reduced from 11 nm to approximately 6 nm due to additional implantation of nitrogen. The further shortening of the average migration length is observed if the processing temperature is reduced to 750 °C It is also found that for implantation of BF
<sub>2</sub>
ions into silicon crystal, the value of the average migration length of boron interstitials is equal to 7.2 nm for thermal treatment at a temperature of 800 °C.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4526</s0>
</fA01>
<fA03 i2="1">
<s0>Physica, B Condens. matter</s0>
</fA03>
<fA05>
<s2>407</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Modeling of the transient interstitial diffusion of implanted atoms during low-temperature annealing of silicon substrates</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VELICHKO (O. I.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KAVALIOVA (A. P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Belarusian State University of Informatics and Radioelectronics, 6, P. Brovki Str.</s1>
<s2>Minsk 220013</s2>
<s3>BLR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>2176-2184</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145B</s2>
<s5>354000506914100380</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>80 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0203922</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>It has been shown that many of the phenomena related to the formation of "tails" in the low-concentration region of ion-implanted impurity distribution are due to the anomalous diffusion of nonequilibrium impurity interstitials. These phenomena include boron implantation in preamorphized silicon, a "hot" implantation of indium ions, annealing of ion-implanted layers et cetera. In particular, to verify this microscopic mechanism, a simulation of boron redistribution during low-temperature annealing of ion-implanted layers has been carried out under different conditions of transient enhanced diffusion suppression. Due to the good agreement with the experimental data, the values of the average migration length of nonequilibrium impurity interstitials have been obtained. It has been shown that for boron implanted into a silicon layer preamorphized by germanium ions the average migration length of impurity interstitials at the annealing temperature of 800 C can be reduced from 11 nm to approximately 6 nm due to additional implantation of nitrogen. The further shortening of the average migration length is observed if the processing temperature is reduced to 750 °C It is also found that for implantation of BF
<sub>2</sub>
ions into silicon crystal, the value of the average migration length of boron interstitials is equal to 7.2 nm for thermal treatment at a temperature of 800 °C.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60A72T</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60F30J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Addition bore</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Boron additions</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Addition germanium</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Germanium additions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Longueur diffusion(transport)</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Diffusion length</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Impureté interstitielle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Interstitial impurities</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Impureza intersticial</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Implantation ion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Ion implantation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Distribution impureté</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Impurity distribution</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Diffusion anormale</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Anomalous diffusion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Difusión anormal</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Hétérodiffusion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Impurity diffusion</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Heterodifusión</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Modèle microscopique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Microscopic model</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Modelo microscópico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>156</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001845 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001845 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0203922
   |texte=   Modeling of the transient interstitial diffusion of implanted atoms during low-temperature annealing of silicon substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024